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1i

Left-computable and computable reals

1 Definition. A real number α is left-computable if there exists a
computable, increasing sequence of rationals converging to it.

α

2 The reason why this is not the same as computable is of course
that there may be the type of “fake convergence” seen above.

3 However: The limit α does become computable if in the n-th
approximation step we are guaranteed to be 2−n-close to it:

αα− 1/2 α− 1/4 α− 1/8

4 So far, so trivial.
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Overview of the talk

1 We will only work inside the left-computable numbers.
2 We are interested in numbers having “benign” approximations

■ that are a little friendlier than just left-computable
■ but without (necessarily) implying computability.

3 We present three notions of such approximations, discuss some
properties, and answer a question posed by Merkle and Titov.

4 We answer a question of Barmpalias about “uniformity,”
leading to a fourth notion of benign approximation.

5 Finally, we inquire into the relationship with randomness.
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Speedability

1 Definition (Merkle & Titov). α is speedable if there is
■ a ρ ∈ (0,1) and
■ a computable left-approximation (an)n of α

such that there are infinitely many n ∈N with
an+1− an

α− an
≥ ρ.

(Merkle & Titov used a different, but equivalent formulation.)

an

αan+ρ · (α− an)

2 Theorem (Merkle & Titov). Any ρ ∈ (0,1) works equally.
(But you need to nonuniformly replace the approximation by another one.)
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Speedability & randomness

1 Theorem (Merkle & Titov; implicit in Barmpalias &
Lewis-Pye). No Martin-Löf random can be speedable.

2 Question (Merkle & Titov).
■ Does the inverse hold?
■ That is: Among the left-computables, are the

randoms characterized by their non-speedability?
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Approximations that catch up

1 While thinking about this, Philip and myself stumbled
across another notion of benign approximation.

2 Definition. α is regainingly approximable if there is
■ a computable left-approximation (an)n of α
■ with α− an < 2−n for infinitely many n ∈N.

αα− 1/2 α− 1/4 α− 1/8

3 Intuition.
■ As in general left-computability, the approximation can

“dawdle” arbitrarily, but infinitely often it must “catch up”
to how fast computable numbers can be approximated.

■ Obviously, (in general) we do not know when these good
moments occur; in case we do, α is again computable.
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Approximations that catch up

1 Note that regaining approximability seems like a really natural
notion. We expected to find previous work on this, but it seems
no one looked at them before.

2 Thus, with Peter Hertling, we studied many of their properties.
Let’s mention only the ones most relevant for this talk.
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Some selected properties

1 Theorem. The regainingly approximable numbers lie properly
between the computable and the left-computable numbers.

2 Fact. All K-trivials are regainingly approximable.
3 Fact. All regainingly approximable α’s are i.o. K-trivial.

■ Idea. For every n such that approximation step an
“catches up”, we just need to encode n to know α up to
precision 2−n, and thus to roughly know its first n bits.

4 Question. Does it coincide with K-triviality?
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Regaining approximability is not K-triviality

1 Theorem. There is a regainingly approximable α
such that K(α ↾ n)> n for infinitely many n.

2 Proof idea.
■ Imitate a left-approximation of Ω by copying all its jumps.

■ Once the resulting initial segment looks to be of high complexity,
continue imitating Ω, but scale the jumps down by some factor.

■ That factor is chosen such that the sum of all future jumps is
small enough not to violate regaining approximability.

■ In case we were deceived and the initial segment turns out to
have low complexity after all, retroactively undo the scaling.

■ This is allowed, as all we want is left-computability.
■ Iterate.
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Regaining approximability implies speedability

1 Why might regaining approximability be relevant for us?

2 Because in order to catch up, a regaining approximation needs to
make big jumps. Question. Are those moments of speedability?

3 Answer. Almost, but not quite. Even a small jump could be the
one finally catching up, if a large jump was made previously.

4 But still, catching up requires making some big jump somewhere,
and we can prove the following statement as a consequence.

5 Proposition. Every regainingly approximable α is speedable.
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The converse is not true

1 Proposition (Merkle & Titov). Every left-computable α
that is the binary expansion of a c.e. set is speedable.

2 Theorem. Not all such α are regainingly approximable.
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So what?

1 The notion of regaining approximability requires
something to have happened at some specific time.

2 Thus, making a number non-regainingly approximable
looks easier than making it non-speedable.

3 But of course, due to the last slide, this is not good
enough to negatively answer the open question yet.

4 Something is still missing, and this brings us to
our third notion of benign approximability.
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Nearly computable, left-computable numbers

1 Definition (Hertling & Janicki).
■ f : N→N is a modulus of convergence of (an)n if for all n ∈N,

and all m≥ f (n), we have |α− am|< 2−n, where α= liman.

■ (an)n converges computably if it has a computable such f .
■ β is nearly computable if, for every computable increasing (bn)n

converging to it, (bn+1− bn)n converges computably to 0.
(This is a special case for left-computables; good enough for us.)

2 Theorem (Downey & LaForte; reformulated). There are
non-computable, left-computable, nearly computable numbers.
(In their original formulation, they showed the existence of a non-computable, left-

computable number all of whose presentations via prefix-free c.e. sets are computable.)

3 Intuition. Knowing computable upper bounds on the size of
individual jumps that may still be made doesn’t “computably
determine” their total sum.
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How does this help answer the open question?

1

2 So if we build something that is nearly computable and not
regainingly approximable, it will not be speedable either.

3 Question. Can we do so while avoiding randomness,
to answer the open question of Merkle & Titov?

Yes!

4 Theorem (Stephan & Wu; reformulated). Left-computable
nearly computable numbers cannot be Martin-Löf random.
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What we know so far & what remains to do

left-computable

Martin-Löf random

nearly
computable

comp. regainingly
approximable

speedable

[MT]+[HHJ]

1 DUMMY



14ii

What we know so far & what remains to do

left-computable

Martin-Löf random

nearly
computable

comp. regainingly
approximable

speedable

[MT]+[HHJ]



14iii

What we know so far & what remains to do

left-computable
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1 Corollary. Existence follows from a result of Downey,
Hirschfelt and LaForte, combined with ours. (Details omitted.)
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2 It remains to show that these two elements exist.
3 The left one then answers the open question negatively.
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Constructing the missing points

1 The proofs are inspired by Downey & LaForte’s proof
that non-trivial nearly computable numbers do exist.

2 But they are more complex because we need to
satisfy more and more complex requirements.

3 We can only hint at some of the main ideas here.
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Compatibility of the notions

1 Theorem. There is a non-computable α that is
regainingly approximable and nearly computable.

2 We construct α as the limit of some (an)n from the left.
3 To ensure regaining approximability: see below.
4 For non-computability:

Ne : ϕe total and increasing⇒ (∃m ∈N) α− aϕe(m)
≥ 2−m.

5 For near computability:

Pe : ϕe total and increasing⇒
(aϕe(t+1)− aϕe(t)

)t converges computably to 0.
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Compatibility of the notions

1 These two types of requirements seem to be in conflict:
■ The left-approximation of α we construct may need to satisfy

negative requirements by performing large jumps rather late.
■ But for positive requirements, we need to commit at certain

points to never again making jumps larger than some bound.

2 We need to carefully balance out these necessities:
■ If a low priority strategy wants to make a large jump, but can’t

due to a higher priority commitment, then that jump is divided
into smaller jumps that are then scheduled for later execution.

■ Even stricter commitments by even higher priority strategies
might lead to even further splitting.

■ A negative requirement is satisfied once all corresponding small
jumps have been executed.

3 Our task is to ensure that all required jumps are executed even-
tually. This is hard because “ϕe is total and increasing” is a non-
computable property, necessitating the use of infinite injury.
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Compatibility of the notions

1 To also achieve regaining approximability, we want to use a
similar idea as above when we were copying Ω:
■ At certain times, we want to scale down the entire game, so

that the sum of all future jumps is sufficiently upper bounded.
2 This needs to be done very carefully, because the mechanism

discussed on the last slide obliges us to make jumps of defined
sizes waiting in queues for their turn. No scaling allowed!

3 Our way out is to make sure that there exist infinitely many
cut-off stages when the queues are (in some sense) empty enough.
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Separating the notions

1 Theorem. There exists a left-computable α which is
nearly computable and not regainingly approximable.

2 We use the same positive requirements for near computability.
3 To prevent regaining approximability:

Ne : ϕe total and increasing ⇒
(∃m ∈N) (∀n≥m) α− aϕe(n)

≥ 2−n.

4 The construction is similar to the previous one, except
■ the infinitary negative requirements need different

timing and a different initialisation strategy, and
■ this time we need not ensure the existence of cut-off

stages, making the verification significantly easier.



19ii

Separating the notions

1 Theorem. There exists a left-computable α which is
nearly computable and not regainingly approximable.

2 We use the same positive requirements for near computability.

3 To prevent regaining approximability:

Ne : ϕe total and increasing ⇒
(∃m ∈N) (∀n≥m) α− aϕe(n)

≥ 2−n.

4 The construction is similar to the previous one, except
■ the infinitary negative requirements need different

timing and a different initialisation strategy, and
■ this time we need not ensure the existence of cut-off

stages, making the verification significantly easier.



19iii

Separating the notions

1 Theorem. There exists a left-computable α which is
nearly computable and not regainingly approximable.

2 We use the same positive requirements for near computability.
3 To prevent regaining approximability:

Ne : ϕe total and increasing ⇒
(∃m ∈N) (∀n≥m) α− aϕe(n)

≥ 2−n.

4 The construction is similar to the previous one, except
■ the infinitary negative requirements need different

timing and a different initialisation strategy, and
■ this time we need not ensure the existence of cut-off

stages, making the verification significantly easier.



19iv

Separating the notions

1 Theorem. There exists a left-computable α which is
nearly computable and not regainingly approximable.

2 We use the same positive requirements for near computability.
3 To prevent regaining approximability:

Ne : ϕe total and increasing ⇒
(∃m ∈N) (∀n≥m) α− aϕe(n)

≥ 2−n.

4 The construction is similar to the previous one, except
■ the infinitary negative requirements need different

timing and a different initialisation strategy, and
■ this time we need not ensure the existence of cut-off

stages, making the verification significantly easier.



A different perspective4



20i

Benignness versus randomness

1 Question (Barmpalias). Do all speedables have a single
approximation whose ρ goes to 1? Or is that a smaller set?
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Superspeedability?

1 Definition. We call α superspeedable if there is a
computable left-approximation (an)n of α such that

limsup
n→∞

an+1− an

α− an
= 1.

2 Question (Barmpalias). Is speedable = superspeedable?

3 Theorem (Titov?). For left-computable numbers,
not immune implies speedable.

4 Theorem. There exists a left-computable number that is
not immune and not superspeedable.
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limsup
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an+1− an

α− an
= 1.

2 Question (Barmpalias). Is speedable = superspeedable?

3 Theorem (Titov?). For left-computable numbers,
not immune implies speedable.

4 Theorem. There exists a left-computable number that is
not immune and not superspeedable.



22i

Benignness versus randomness

MLR
lef

t-c
om

pu
tab

le

speed
able

superspeedable

regainingly approximable

computable

[HJ]

[HJMS]

Ω

be
ni

gn
ra

nd
om



22ii

Benignness versus randomness

MLR
lef

t-c
om

pu
tab

le

speed
able

superspeedable

regainingly approximable

computable

[HJ]

[HJMS]

Ω

be
ni

gn
ra

nd
om



22iii

Benignness versus randomness

MLR
lef

t-c
om

pu
tab

le

speed
able

superspeedable

regainingly approximable

computable

[HJ]

[HJMS]

[HHJ]+[HJMS]

Ω

be
ni

gn
ra

nd
om



22iv

Benignness versus randomness

MLR

SR

lef
t-c

om
pu

tab
le

speed
able

superspeedable

regainingly approximable

computable

[HJ]

[HJMS]

[HHJ]+[HJMS]

Ω

be
ni

gn
ra

nd
om



22v

Benignness versus randomness

MLR

SR

lef
t-c

om
pu

tab
le

speed
able

superspeedable

regainingly approximable

computable

[HJ]

[HJMS]

[HHJ]+[HJMS]

Ω

be
ni

gn
ra

nd
om



23i

A superspeedable Schnorr random

1 Theorem. There is a superspeedable Schnorr random.

2 Theorem (Franklin, Stephan). The following are equivalent.
■ A is not Schnorr random;
■ there is a computable martingale d with the savings property

and a computable function f such that ∃∞n (d (A ↾ f (n))⩾ n).
(That is, there is a computable lower bound on the winning speed of d.)

3 For the proof, fix a c.e. A such that A is “incomputably
thin” (dense simple) but whose binary expansion nonetheless
contains arbitrarily long sequences of zeros.

4 Define ΩA bitwise via

ΩA(n) :=
¨

Ω(m) if n= pA(m),
0 else;

(That is, all bits of Ω are there, but they are stored at those positions that are in A.)
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A superspeedable Schnorr random

Proof sketch.

1 ΩA is superspeedable:
■ ΩA contains arbitrarily long blocks of 0’s, by choice of A.
■ Then the stages when, for the last time, a bit left of one of

these blocks changes, witness superspeedability.
2 ΩA is Schnorr random:

■ If not, there is a computable d winning at computable speed f.
■ We turn this into a partial computable d′ winning on Ω.�
■ If a true initial segment of Ω is input, then d′ can approximate
Ω until it sees a match. (This step causes the partiality of d′.)

■ By Kolmogorov complexity arguments, c.e. A settles much faster
than random Ω. Thus, at the time of the match, d′ knows A.

■ Then omitting all bets on A leads to d′ betting on Ω as d would
have bet on the corresponding bits encoded in ΩA.

■ As A is incomputably thin, but d had a computable winning
speed, an infinite portion of its winnings must have originated
from the bits of Ω. Thus d′ wins infinitely much on Ω.
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Is anybody here?

1 Open question. Do numbers in the marked fields exist?
(It would be strange if not, but we could not construct any.)
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Open questions

How far down
does CR/PCR/. . .

reach?
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2 Open question. How benignly approximable can computable
randoms, partial computable randoms, weak s-randoms,. . . be?
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More open questions

1 Open question. Recall that we worked inside the nearly
computables to obtain a counterexample to the question of
Merkle and Titov. Are there counterexamples outside, too?
Equivalently: Do the Martin-Löf random numbers, the nearly computable numbers,

and the speedable numbers together form a covering of all left-computable numbers?

2 Open question. What are the Weihrauch degrees of incompu-
table tasks naturally arising in this area? For example,
■ given an approximation witnessing speedability and a

desired ρ, find a sequence of stages where ρ is achieved;
■ for a speedable number and a desired ρ, determine another

approximation of that number which achieves ρ;
■ for an approximation witnessing regaining approximability,

find the n’s at which the approximation “catches up;” etc.
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